
Supported by NSF-DMS-0807395 and NSF-DMS-0807330!

Mathematical and Computational Sciences Division Seminar 
National Institute of Standards and Technology  -  Gaithersburg, MD 

November 30, 2010 



!"

Outline 
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•! Properties of wormlike micellar solutions 
•! Development of an elastic network (scission/reforming) model (VCM) 

•! 1D CHANNEL FLOW 
•! Apparent slip boundary layer 
•! Time dependent interior diffusive layer 
•! Non-local effects 

•! NUMERICS 
•! ADDS (Adaptive Domain Decomposition Spectral) Method 

•! CHANNEL FLOW - LINEAR STABILITY 
•! Interfacial instability 
•! Diffusive restabilization 

•! EXTENSIONAL FLOW 
•! Rupture 
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Wormlike Micellar Solutions 

Applications 

• Oil industry (fracturing fluids, EOR) 
• Household and cosmetic products 
• Drag/friction reducers 
• Biotechnology 

Complex 
geometries and 
unsteady flows 

Therefore it is important for us 
to fully understand the steady 
and transient rheology of these 
entangled microstructured 
solutions. 
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Wormlike Micellar Solutions"

Hydrophobic 
Tail 

Hydrophilic 
Head 

Critical Micellar 
Concentration 

Self-assemble 

Overlap 
Concentration 

Clausen et al.  (1992) J. Phys. Chem. 

Different properties depend on 
surfactant and salt concentration† 

•!CPyCl/NaSal 

•!CTAB/NaSal 

•!EHAC/NaSal 

•!TTABr/NaSal 

Schubert et al. (2003) Langmuir 

EHAC 
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UCM (upper convected Maxwell) Model   

(·)(1) =
∂(·)
∂t

+ (v ·∇)(·)− (∇v)T · (·)− (·) · (∇v)

λτ22,t + τ22 = 0

τ =




τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33



 γ̇ = ∇v + (∇v)T

Simple Shear:  

λτ (1) + τ = η0γ̇

A =
η0

λ
I− τ

λ(τ12,t − γ̇12τ22) + τ12 = η0γ̇12
λτ12,t + τ12 = η0γ̇12

v = (v1(x2), 0, 0) = (γ̇12(t)x2, 0, 0)

Upper convected time derivative: 



UCM Model in SAOS 

Small amplitude oscillatory shear (SAOS): 

storage modulus,     loss modulus 

G′ = G0
(λω′)2

1 + (λω′)2
G′′ = G0

λω′

1 + (λω′)2

τ12 = γ0 [G′ sin(ωt) + G′′ cos(ωt)]

γ0 ! 1

λ = 0.63 s
100/50 mM CPyCl/NaSal 

γ12 = γ0 sin(ωt) γ̇12 = ωγ0 cos(ωt)

G0 =
η0

λ
= 22.6 Pa

Relaxation time: 

Plateau modulus: 
G′′ = G′ =⇒ λω = 1

Pipe et al, J. Rheol. (2010) 
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2nd Relaxation Time"

BUT, for wormlike micelles, the 
storage and loss moduli are 

G′′ = G0

[
λω′

1 + (λω′)2
+ n2

λ2ω′

1 + (λ2ω′)2

]

G′ = G0

[
(λω′)2

1 + (λω′)2
+ n2

(λ2ω′)2

1 + (λ2ω′)2

]

100/50 mM CPyCl/NaSal 

λ = 0.63 s

λ2 = 0.0011 s

λ2 ! λ

Pipe et al, J. Rheol. (2010) 
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Banding in Steady Shear Flow  
Wormlike Micelles 

•! Shear banding in the velocity 
profile for certain range of 
applied shear rates"

Hu and Lips, J. Rheol. (2005)"

•!Plateau in the steady state flow curve  
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Miller and Rothstein, JNNFM (2007)"

Shear rate control:"
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Banding in Steady Shear Flow  
Constitutive Instability 

•! Shear banding in the velocity 
profile for certain range of 
applied shear rates"

Hu and Lips, J. Rheol. (2005)"

•!Non-monotone constitutive curve as a 
result of the breakage of the long 
chains. 

Shear rate control:"
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Banding in Steady Shear Flow  
Constitutive Instability 

•! Shear banding in the velocity 
profile for certain range of 
applied shear rates"

Hu and Lips, J. Rheol. (2005)"

•!Given a shear rate within the unstable 
region, the model chooses shear rates 
on stable branch. 

Shear rate control:"
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Banding in Steady Shear Flow  
Constitutive Instability 

•! Shear banding in the velocity 
profile for certain range of 
applied shear rates"

Hu and Lips, J. Rheol. (2005)"

•!Because of this splitting, the flow 
becomes inhomogeneous and the 
stress plateau is observed 
corresponding to shear banding.. 

Shear rate control:"
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Nonlinear Single Species Models 

λA(1) + A−G0I = −ξ

3
λ

G0
(γ̇ : A)A

λA(1) + A−G0I = −α
1

G0
(I−A) · (I−A)

λÅ + A−G0I = 0

Å = A,t +v ·∇A− ωT · A−A · ω − a

2
(γ̇ · A + A · γ̇)

2ω = ∇v − (∇v)T

Johnson-Segalman Model 

Giesekus Model 

Partially Extending Convected (PEC) Model 

Ronald G. Larson, Constitutive Equations for Polymer Melts and Solutions, (© 1988)"

Gordon-Schowalter derivative 

Vorticity tensor 
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Elastic Network Theory 

Micelles are modeled as breakable/
reformable elastic segments composed 
of Hookean springs connected to form a 
elastically active network. 

viscous drag + elastic resistance + Brownian motion 

Q

(r, Q, t)dr dQ: Number of segments in the range  dr dQ about r,Q at time t. 

Evolution Equation – Network Theory 

 

!"#

!t
= $

!

!r
% !"r#"#( ) $

!

!Q
% ! "Q#"#( ) + Breaking/Reforming

 
!! " Average over momenta 

Lodge, Yamamoto, Green;  Bird et al. (1986)"



($"

Breaking and Reforming  living polymers 

Cates’ theory (reptation/reaction):"

Assumptions: 
•! Length of each chain is a continuous variable L 
•! A chain can break with equal probability per unit time per unit length 

Discrete breaking and reforming :"

L

N(L)

Assumptions: 
•! m species 
•! Discrete breakage points/lengths 

B A

Long species A:   !A(r,Q,t)   
relaxation by reptation 

Short species B:   !B(r,Q,t)  
relaxation is Rouse-like 

L

!
A
~ L

3
/ L

E

!
B
~ (L / 2)

2

*+,-."/"*+01+23"789:;%8<.248!=(>*+!?"4('')5"

67-81709"/"*+,-.3"@4A8!B2!9:;%8"4!)):5"

→

Here we 
take m =2 
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Governing Equations (VCM Model) 

A = QQ{ }
A
= QQ!

A
dQ"

B = QQ{ }
B
= QQ!

B
dQ"

Configuration Tensors: 

Constitutive equations"

! = A,B

Number Densities: 

n! (r, t) = "!dQ#

Breaking Rate: 

                           Doi-Edwards/Larson 
Reforming Rate: 

cB = constant = cBeq

cA =
ξµ

3

(
γ̇ :

A
nA

)
+ cAeq

Vasquez, Cook and McKinley, JNNFM (2007) 

µDnA
Dt = 2δA∇2nA − δA∇∇ : A + 1

2cBn2
B − cAnA

µDnB
Dt = 2δB∇2nB − 2δB∇∇ : B− cBn2

B + 2cAnA

µA(1) + A− nAI = δA∇2A + cBnBB− cAA

εµB(1) + B− nB
2 I = ε

[
δB∇2B− 2cBnBB + 2cAA

]

Nonlinear fitting parameter 
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Governing Equations (VCM Model) 

A = QQ{ }
A
= QQ!

A
dQ"

B = QQ{ }
B
= QQ!

B
dQ"

Configuration Tensors: 

Constitutive equations"

! = A,B

Number Densities: 

n! (r, t) = "!dQ#

E−1 Dv
Dt

= −∇ · Π

∇ · v = 0

Total Stress: Conservation of momentum 

Conservation of mass 

Vasquez, Cook and McKinley, JNNFM (2007) 

µDnA
Dt = 2δA∇2nA − δA∇∇ : A + 1

2cBn2
B − cAnA

µDnB
Dt = 2δB∇2nB − 2δB∇∇ : B− cBn2

B + 2cAnA

µA(1) + A− nAI = δA∇2A + cBnBB− cAA

εµB(1) + B− nB
2 I = ε

[
δB∇2B− 2cBnBB + 2cAA

]

Π = pI + (nA + nB)I−A− 2B− βγ̇ E−1 =
ρH2

λeffη0
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Governing Equations (VCM Model) 

A = QQ{ }
A
= QQ!

A
dQ"

B = QQ{ }
B
= QQ!

B
dQ"

Configuration Tensors: 

Constitutive equations"

! = A,B

Number Densities: 

n! (r, t) = "!dQ#

Diffusion terms: 
•! Bhave et al., J.Chem.Phys. (1991) 
•! Beris and Mavrantzas, J. Rheol. (1994) 

Stress boundary conditions: 
•! Dirichlet, Neumann or Mixed (Robin):  (?) 

•! Bhave et al., J.Chem.Phys. (1991),  Mavrantzas et al., J.Rheol. (1992), 
Adams et al., JNNFM (2008), Black and Graham, Macromolecules 
(2001) 

µDnA
Dt = 2δA∇2nA − δA∇∇ : A + 1

2cBn2
B − cAnA

µDnB
Dt = 2δB∇2nB − 2δB∇∇ : B− cBn2

B + 2cAnA

µA(1) + A− nAI = δA∇2A + cBnBB− cAA

εµB(1) + B− nB
2 I = ε

[
δB∇2B− 2cBnBB + 2cAA

]

δA =
λADA

H2

δB =
λBDB

H2
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Parameters 

relaxation time of species A 

relaxation time of species B"

effective relaxation time of the network"

Relaxation times:"

!
A

!
B

!
eff

Viscosities:"

dimensional solvent  viscosity"

dimensional zero shear rate micellar viscosity !
0

!"

Geometric/fluid parameters"

density of the solution"

length scale "

!

!
s

!

Model parameters"

non-dimensional diffusion constants 

flow-enhanced  breakage rate"

λeff =
λA

1 + λAc′
Aeq

µ =
λA

λeff

H µm→ cm

ε =
λB

λA
=

LE

4L
! 1

β =
ηs

η0
! 1

E−1 =
ρH2

λeffη0
! 1

O(10−5) ≤ δA =
λADA

H2
≤ O(1)

O(10) Pa s

O(10−1) s

O(10−4)−O(10−3) s

O(1) s

O(10−4) Pa s
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Pressure-Driven Channel Flow"

P =
∆pH

LG0

•! Momentum: 

•! VCM constitutive equations + No flux of species and conformation at the wall 

•! Effect of microfluidics: 

P + Axy,y + 2Bxy,y + βu,yy = 0

δA =
λADA

H2
∼ 2sec · 10−9m2/sec

(10−4)2m2
= 2 · 10−1

Helgeson and Vasquez et al., J. Rheol. (2009); Masselon et al., PRE (2010) 

•! Microfluidic devices can be 
used to explore non-local 
effects by systematically 
controlling the channel height, 
H. 

δ =
λADA

H2
O(10−11)m2/s ≤ DA ≤ O(10−9)m2/s
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Pressure-Driven Channel Flow"

P =
∆pH

LG0

•! Momentum: 

•! For slow flow dominated by the `A’ species, the momentum balance becomes: 

which results in a boundary layer at the wall of characteristic width (!")1/2. 

P + Axy,y + 2Bxy,y + βu,yy = 0

•! The use of the boundary 
conditions of no flux of 
species and conformation at 
the wall requires the inclusion 
of a solvent viscosity: 

β =
ηs

η0
= 7× 10−5

P + Axy,y − βδAxy,yyy = 0

δ =
λADA

H2
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Singular Perturbation"

P + Axy,y − βδAxy,yyy = 0

Outer 

Hagen-Poiseuille 

βδ → 0

Axy,y = −P

Axy = −Py

u,y = Axy

u =
P
2

(0.25− y2)
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Singular Perturbation"

P + Axy,y − βδAxy,yyy = 0

Outer 

Hagen-Poiseuille 

Inner βδ → 0 0 < βδ ! 1

Axy,y = −P

Axy = −Py

u,y = Axy − δAxy,yy

u,y = Axy

u =
P
2

(0.25− y2)

Axy = P



−y +
√

βδ
sinh

(√
1

βδ y
)

cosh
(

1
2

√
1

βδ

)





Expanding the solution near the 

wall and substituting into the 
inner equation for the velocity: 

u ! P
2

(0.25− y2)+
Pδ

2

(
1− exp

{
1√
βδ

(y − 0.5)
})
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Wall Boundary Layer in Channel Flow"

!!"# ! !"#
!

!"!#

!"$

!"$#

!"%

!"%#

!"&

!"&#

!"'

!"'#

!"#

y

u

(

(

P = 0 .5

P = 1

P = 2

•! The no flux boundary conditions, necessitated by the inclusion of 
diffusion, leads to boundary layer of characteristic width (!")1/2 which 
affects both shear stress and velocity, the latter of which presents as an 
apparent slip velocity:   

δ =
λADA

H2
= 10−1

us !
Pδ

2
=

∆p′λADA

G0LH

Pδ

2
= 0.1
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Spurt & Hysteresis"

•! At the onset of shear banding there is sudden jump in the volumetric flow 
rate, `spurt’.  For this value of the diffusivity, spurt occurs at                    . "

δ =
λADA

H2
= 10−3P =

∆pH

LG0

! " # $ % &!
&!

!"

&!
!&

&!
!

&!
&

&!
"

&!
'

P

Q

 

 

VCM

Oldroyd-B

VCM-B

VCM - Ramp Down

Q ! P
12µεnT

Q ! P
12

P ! 2.39

Flow rate of the 
Oldroyd-B model: 

Q ! 1
12
P

Spurt: Marín-Santibáñez et al., JNNFM (2009), de Vargas et al., Rheo. Acta (2003) 

Q′ = 2W

∫ H/2

0
u′dy′

Q =
λeff

H2W
Q′

The dimensional volumetric flow 
rate is given by: 

When cast in dimensionless form, we 
have: 

Cromer et al., JNNFM (2010) 
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Shear Banded Velocity Profile in Channel Flow 

Experiment vs. VCM"

•! Above a critical pressure drop, experiments of wormlike micelles exhibit 
shear banded velocity profiles with a low shear rate, plug-like flow in the 
center and a high shear rate region adjacent to the walls. 

H = 200µm

Experimental: Masselon et al., PRE (2010) 
also: Masselon et al., PRL (2008), Nghe et al., App.Phy.Let. (2008), 
 Callaghan et al., J.Rheol. (1997) 
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Shear Banded Velocity Profile in Channel Flow 

Experiment vs. VCM"

P =
∆pH

LG0

•! Simulations show that, above a critical pressure gradient, the VCM model 
exhibits these  shear banded velocity profiles. 

H = 200µm

!!"# ! !"#
!

$!

%!

&!

'!

(!!

($!

(%!

(&!

('!

$!!

y

u
)

)

P = 2 .5
P = 4
P = 6

δ =
λADA

H2
= 10−1

VCM 

Experimental: Masselon et al., PRE (2010) 
also: Masselon et al., PRL (2008), Nghe et al., App.Phy.Let. (2008), 
 Callaghan et al., J.Rheol. (1997) 
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Shear Banded Velocity Profile in Channel Flow 

Experiment vs. VCM"

•! For small diffusivity parameters the width of the kink                           
joining the high and low shear bands becomes sharp and difficult to 
resolve numerically.                          Radulescu and Olmsted, JNNFM (2000) 

!!"# ! !"#
!

$!

%!

&!

'!

(!!

($!

(%!

(&!

('!

$!!

y

u
)

)

P = 2 .5
P = 4
P = 6

!/H = δ1/2

! = (λADA)1/2

δ =
λADA

H2
= 10−3P =

∆pH

LG0

H = 200µm

Experimental: Masselon et al., PRE (2010) 
also: Masselon et al., PRL (2008), Nghe et al., App.Phy.Let. (2008), 
 Callaghan et al., J.Rheol. (1997) VCM 



!&"

Effect of Diffusion on the Plateau - VCM"

•! Increased diffusion lowers the plateau (at 
lower shear rates), decreasing the stress at the 
interface between bands.  

P =
∆pH

LG0
= 2.5

Experimental: Masselon et al., PRE (2010) 
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Flow Curve Collapse - VCM"

!"
!#

!"
!!

!"
"

!"
!

!"
#

!"
$

!"
!#

!"
!!

!"
"

γ̇

σ

 

 

P = 2.5

P = 4

P = 6

P = 8

P = 10

•! Increased diffusion lowers the plateau (at 
lower shear rates), decreasing the stress at the 
interface between bands.  

•! Local flow curves collapse on top of 
each other when H is eliminated from 
dimensionless groups. 

P =
∆pH

LG0
= 2.5 Pδ1/2 =

√
λD∆p

LG0
= 0.25

Experimental: Masselon et al., PRE (2010) Cromer et al., JNNFM (In press) 
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Start-up of Plane Poiseuille Flow"

The interfacial layer connecting the shear 
bands evolves in time on several different 
time scales: 

!!The layer forms at the wall and 
initially evolves on a fast, viscoelastic 
relaxation time scale. 

!!The layer then evolves on a slower 
diffusive time scale eventually 
settling into its steady position on a 
time scale proportional to (")-1/2.  

     Radulescu et al., Europhys. Lett. (2003) 

1D Momentum + Constitutive Equations  
Coupled, nonlinear system of time-dependent partial differential equations 

!!"# ! !"#
!

#

$!

$#

%!

%#

&!

&#

'!

yint

t
(

(

δ = 10−3

δ = 10−1

!!"# ! !"#
!

#

$!

$#

%!

%#

!!"# ! !"#
!

$!

%!

&!

'!

#!

(!

)!

*!

u

uP =
{

0 : t < 0
P : t ≥ 0
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Flow Subdomains"

1D Momentum + Constitutive Equations  
Coupled, nonlinear system of time-dependent partial differential equations 

The half-domain of shear banded flow can 
be separated into 4 subdomains: 
!! The low shear rate, plug-like flow 

in the center of the channel. 
"! The interfacial layer connecting the 

shear bands, with characteristic 
width "1/2.                                            

Radulescu and Olmsted, JNNFM (2000) 

#! The high shear rate flow closer to 
the solid wall. 

$! The apparent slip boundary layer, 
with characteristic width (!")1/2.  

0 0.5

y

σ
=

|A
x

y
+

2B
x

y
+

β
u ,

y|
σ = Py

σw = P/2

0 0.5

y

u

| 1© | 2©| 3© | 4©|

Low shear rate
(plug-like) region

Interfacial shear
layer

Apparent slip
boundary layer

√
δ

√
βδ

High shear rate
region
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ADDS Method"

•! Adaptive Domain Decomposition Spectral 

(ADDS) Method: 
•! Domain Decomposition 

•! Patching Method 
•! Orszag, J. Comp. Phys. (1980) 

•! Interpolation 
•! Barycentric Lagrange interpolation: 

•! Berrut and Trefethen, SIAM Review (2004) 

1D Momentum + Constitutive Equations  
Coupled, nonlinear system of time-dependent partial differential equations 

•! 2nd order, variable step size, fixed leading coefficient BDF 
•! Brenan, Campbell and Petzold, Numerical Solution of IVPs in DAEs, (© 1989) 

0 0.5

y

u

| 1© | 2©| 3© | 4©|

Low shear rate
(plug-like) region

Interfacial shear
layer

Apparent slip
boundary layer

√
δ

√
βδ

High shear rate
region
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Implementation of ADDS Method"

•! Using only a relatively small amount of collocation points , the ADDS method is 
able to resolve the time-dependent interior diffusive layer in a computationally 
efficient manner. 

ADDS with 93 points 

P =
∆pH

G0L
= 4

Expected steady variation in shear stress 

δ =
λADA

H2
= 10−5

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6
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σ

Axy

σ = Axy + 2Bxy + βu,y



#$"

Channel Flow Instability"

"! Experiment: 
"!Fluctuations along the interface between bands have been seen in the shear 

banded flow of wormlike micellar solutions in pipes and channels driven by 
a pressure gradient: 

"! In the flow direction 
"! Yamamoto et al., Rheol. Acta (2008) 

"! In the vorticity direction at the interface 
"! Nghe et al., PRL (2010) 

"! Analytic: 
"!   Causes of instability 

"! First normal stress jump 
"! Wilson and Rallison, JNNFM (1999) – O-B 

"! Shear thinning 
"! Wilson and Rallison, JNNFM (1999) – W-M 

"! Shear banding 
"! Fielding and Wilson, JNNFM (2010) – J-S 

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y

N
1

 

 

δ = 10−3

δ = 10−2

δ = 10−1

Cromer et al., JNNFM (to appear) - VCM 
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Linear Stability"

The 1D base state is subjected to a perturbation of the form: 

()1 is the eigenfunction which is a function of y only, k is the wavenumber in the 
flow direction, x, and #=#

R
+i#

I
 is the eigenvalue where #

I
>0 # Blow up. 

"!The resulting system of equations form a generalized eigenvalue problem of the 
form: 

"!B is singular due to the assumption of inertialess flow.  This singularity produces 
infinite eigenvalues which complicates the solution of the eigenvalue problem.   

"!Thus, we adapt the method developed by Goussis and Pearlstein, J. Comp. Phys. 
(1989) to map the infinite eigenvalues onto the complex plane leaving the true 
eigenvalues of the system untouched. 

Ax = ωBx

f = f0(y) + δsf
1(y)ei(kx−ωt)
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VCM Unstable – Eigenfunctions"

•! Unstable eigenfunctions for the VCM model:     
 Streamfunction. $ and the velocity, u1. 
•! The sharp gradients at the interface between 

the shear bands indicate local fluctuations of 
the interfacial layer. 

•! Superposition of base state and perturbation 
results in sinuous (odd; snake-like) flow.   

•! Similar to that seen for the Johnson-Segalman 
model.  Fielding & Wilson JNNFM (2010) 

P = 2.5 k = 2

x

y

! !"# $ $"# % %"# &
!!"#

!!"'

!!"&

!!"%

!!"$

!

!"$

!"%

!"&

!"'

!"#

x

y

! !"# $ $"# % %"# &
!!"#

!!"'

!!"&

!!"%

!!"$

!

!"$

!"%

!"&

!"'

!"#

ψ

! "! #! $! %! &! '!
!!(&

!!(%

!!($

!!(#

!!("

!

!("

!(#

!($

!(%

!(&

u0

y

u1 =
∂ψ

∂y

δ = 10−3
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Role of Diffusion on Flow Stability"

•! The 1D, shear banded base state for the VCM model becomes linearly unstable to 
perturbations in the flow direction at the onset of shear banding, `spurt’. 

!!For this value of the diffusivity, 
spurt occurs at                    ."P ! 2.39

δ =
λADA

H2
= 10−3

β = 7× 10−5
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Role of Diffusion on Flow Stability"

•! The 1D, shear banded base state for the VCM model becomes linearly unstable to 
perturbations in the flow direction at the onset of shear banding, `spurt’. 

!!For this value of the diffusivity, 
spurt occurs at                    ."P ! 2.39

δ =
λADA

H2
= 10−3

β = 7× 10−5 P =
∆pH

LG0
= 2.5
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!!As the value of the diffusivity is 
increased the flow becomes 
increasingly stable."
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Neutral Stability Envelope"

•! Neutral stability curves for the VCM model: 
•! Increased diffusivity, or decreased channel height, smoothes the kink in the 

velocity profile and progressively stabilizes the shear banded base flow. 
•! The critical diffusivity at which the flow of the VCM fluid becomes globally 

linearly stable is:     

P =
∆pH

LG0
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ω∗(k;P, δ) = 0

δ =
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β = 7× 10−5
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Transient Extensional Flow: FiSER 

Bhardwaj, Miller, Rothstein, J. Rheol. (2007) 

Rupture for large extension rates (De), for smaller De failure through 
elastocapillary thinning.  (transition between De=0.74 and 0.99) 

“Dramatic rupture near axial midplane (at constant stress independent 
of De) likely stems from the local scission of individual wormlike 

micelle chains.” 

150/75 mM CPyCl/NaSal, De=2.6 
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Governing Equations (VCM Model) 

A = QQ{ }
A
= QQ!

A
dQ"

B = QQ{ }
B
= QQ!

B
dQ"

Configuration Tensors: 

Constitutive equations"

! = A,B

Number Densities: 

n! (r, t) = "!dQ#

•!Free Surface BC’s at  S := r – R(z,t) = 0 

Kinematic Condition               Normal and Tangential Stress Balances 

DS

Dt
= 0 n · Π · n = −2Ec−1κ

t · Π · n = 0

Hencky strain = ε = ε̇0t

Deborah number = De = λeff ε̇0

Elastocapillary number = Ec = G0R0/σ

DeA = λAε̇0

DeA
DnA
Dt = 1

2cBn2
B − cAnA

DeA
DnB
Dt = −cBn2

B + 2cAnA

DeAA(1) + A + nAI = cBnBB− cAA
εDeAB(1) + B − nB

2 I = ε [−2cBnBB + 2cAA]
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Homogeneous Uniaxial Extensional Flow 

N1 = Azz −Arr + 2(Bzz −Brr)
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./0

1/0

23-4-564

27889:);%<

27889:(;%<

Steady tensile stress 
Model comparison 

Cromer et al, Chem. Eng. Science (2009)  

ηE =
N1

De

First Normal Stress Difference 
(Elastic Tensile Stress) 

Extensional Viscosity 
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1-D (Lagrangian) Inhomogeneous 
Transient Extension 
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M. Renardy, Rheol. Rev. (1994) 

"<"Particle position in original reference frame""
           : Actual position of the particle"

Stretch;"

Total stretch constraint: 
       FiSER 

Equation of motion: 

Initial condition:"

Constitutive equations"

X
z(X, t)

s =
∂z

∂X
w,z =

s,t
s

R(X, t) =
1√
s

s(X, 0) = 1− δ cos(2πX)

3βDe
s,t
s2

+
N1

s
+

Ec−1

√
s

= f(t)

∫ 1

0
s(X, t)dX = eε
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VCM Filament Evolution 

ε = 0.1
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VCM Filament Evolution 

ε = 0.1 ε = 1.2
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VCM Filament Evolution 

ε = 0.1 ε = 1.2 ε = 1.24
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VCM Filament Evolution 

ε = 0.1 ε = 1.2 ε = 1.24 ε = 1.2433
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VCM Filament Evolution 

ε = 0.1 ε = 1.2 ε = 1.24 ε = 1.2433
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“This filament failure likely stems 
from the scission of wormlike 
micelles resulting in a dramatic 
breakdown of the micelle network 
en masse.”  Rothstein, J. Rheol. (2003) 
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VCM vs. Experiment -- Rupture 

Strong  recoil at the end 
plates (accompanied by 
dramatic thinning at the 
axial mid-plane) 

ε = 0.1 ε = 1.2 ε = 1.24 ε = 1.2433
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∆t ≈ 1ms∆t ≈ 4.7ms ∆t ≈ 4.7ms ∆t ≈ 3.15ms

De = 2, Ec−1 = 0

Bhardwaj et al., J. Rheol. (2007) 
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Recap/Conclusions"

•!VCM Model 

•! Framework for consistently developing nonlocal constitutive models that 
couple evolutions in stress, number density and diffusivity. 

•!Planar channel flow – VCM 

•! Boundary layer resulting from the inclusion of solvent viscosity and     _   
diffusion. Time-dependent interior (shear) layer of characteristic width !". 

•! ADDS method uses a domain decomposition Chebyshev collocation 
patching method to resolve the layers and barycentric Lagrange 
interpolation to adapt domains in time. 

•! Linear Stability – VCM channel flow 

•! The  1D banded channel flow becomes linearly unstable at the onset of 
shear banding creating sinuous disturbances along the channel.  Increasing 
the dimensionless diffusivity, or decreasing the channel height, 
progressively stabilizes the flow: "crit " 4 x 10-3.  

•!Extensional flow – VCM 

•! A VCM filament can undergo a dramatic rupturing event, similar to 
experiment, that is accompanied by the long chains breaking en masse. 


